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The four classical interatomic pair potentials of Lennard-Jones [Proc. Roy. Soc.
Lond. A 106 (1924) 463], Morse [Phys. Rev. 34 (1929) 57], Rydberg [Z. Phys. 73, (1931)
376] and Buckingham [Proc. Roy. Soc. Lond. A 168 (1938) 264] have been widely
adopted in molecular force fields of computational chemistry softwares and also incor-
porated into 2-body potential energy description in many-body solid-state physics. This
paper demonstrates how mathematical methods such as infinite series expansions can
be used to connect parameters across these interatomic potential functions.
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1. Introduction

Though the quantum mechanical approach is known to be theoretically
rigorous, the importance of empirical interatomic potentials are nevertheless
undoubted in view of the latter’s practicality. For example, the pair potentials of
Lennard-Jones [1]

ULJ = DLJ
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Morse [2]

UM = DM [exp (−2α(r − R)) − 2 exp (−α(r − R))] , (2)

Rydberg [3]
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and Buckingham [4]

UB = A exp (−Br) − C

r6
(4)

have been adopted in the 2-body portion of the Pearson-Takai-Halicioglu-Tiller
(PTHT) [5], the Biswas-Hamann (BH) [6], the Murrell-Mottram (MM) [7] and
the Bauer-Maysenholder-Seeger (BMS) [8] empirical potentials respectively. The
later potentials, [5–8] consist of both 2-body and 3-body potential energy for
describing many-body condensed matter systems, and have been parametrized
for silicon [5–7] and FCC metals (Cu, Ag, Au) [8]. As shown in table 1, the
2-body portion of PTHT and MM adopt the exact version of Lennard-Jones
and Rydberg potentials, respectively. However, the 2-body portion of BMS is a
generalized version of the Buckingham potential. The generalization is more so
for the case of BH’s 2-body portion in comparison to the Morse potential. As
such, this paper primarily develops a simultaneous relationship among the classi-
cal functions of Lennard-Jones, Morse, Rydberg and Buckingham potentials, fol-
lowed by relationships between the classical pair potentials of Morse and Buck-
ingham with the 2-body portion of BH and BMS, respectively. The present work
is a follow-up of previous effort in establishing parametric relationships between
interatomic potential functions using mathematical approaches [9–20] (figure 1).

2. Analysis

To obtain near-equilibrium relationship, let
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Table 1
Comparison between classical and 2-body portion of modern empirical potentials.

Classical potential functions 2-Body portion of modern potentials

Lennard-Jones [1] Pearson-Takai-Halicioglu-Tiller [5]
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Morse [2] Biswas-Hamann [6]
UM = DM [exp (−2α(r − R)) − 2 exp (−α(r − R))] UBH = A1 exp (−λ1r) + A2 exp (−λ2r)

Rydberg [3] Murrell-Mottram [7]
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r6 UBMS = A exp (−Br) − C

rn



T.-C. Lim / Connection among classical interatomic potential functions 263

Figure 1. Simultaneous connection among the classical potential functions (inner circle) as well
as with some 2-body portion of modern potentials used in many-body condensed matter systems

(outer circle).

for n = 0, 1, 2. This results in the following system of equations across the four
classical potentials considered herein

 ξ 0 1
ξ 1 6
ξ 2 42
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 {
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−1
0
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
 , (6)

where the scaling function is defined as

ξ = BR. (7)

Buckingham’s repulsive coefficient, A, can be expressed in terms of its attractive
coefficient, C, from the second row of equation (6),

C

R6
= ξ

6
A exp (−ξ) (8)

which, upon substitution into the first and third rows of equation (6), gives(
ξ − 6

6

)
A exp (−ξ) = DLJ = DM = DRyd (9)

and

ξ (ξ − 7) A exp (−ξ) = 72DLJ = 2α2R2DM = a2DRyd, (10)
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respectively. Eliminating the term A exp(−ξ) from equations (9) and (10) leads
to

ξ =




( 19
2

) ±
√( 19

2

)2 − 72(
7
2 + α2R2

6

)
±

√(
7
2 + α2R2

6

)2
− 2α2R2

(
7
2 + a2

12

)
±

√(
7
2 + a2

12

)2
− a2

. (11)

We note that for any non-negative value of αR or a, the upper and lower solu-
tions for the scaling function are of the range ξupp � 7 and ξ low ∈ [0, 6], respec-
tively. Since substitution of equations (8) and (9) into equation (4) gives
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the upper solution of equation (11) is selected to maintain sign consistency
between equations (4) and (12). We further note that the first and third rows of
equation (6) explicitly show that

DLJ = DM = DRyd (13)

and

a2 = 2α2R2 = 72, (14)

respectively. The relationship described in equation (14) can also be obtained by
comparing terms in equation (11). Hence equations (11)–(14) provide a simulta-
neous connection, for near equilibrium, among the four classical potentials con-
sidered herein.

To obtain a long range relationship, there is a need to compare the coeffi-
cients and the indices of the repulsive and attractive terms of the potentials. The
Rydberg potential in the original form, equation (3), does not give any clear dis-
tinction between the repulsive and attractive terms. To pave a way for compari-
son, equation (3) is rewritten in the form

URyd = DRyd
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and, upon recalling the Maclaurin series expansion for the following exponential
function
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we substitute the approximation
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into the square parenthesis of equation (15) to yield

URyd ≈ DRyd

[
exp

(
2a

(
1 − r

R

))
− 2 exp

(
a

(
1 − r

R

))]
. (18)

Likewise, the Morse potential can be rewritten in such a manner to enable com-
parison of its indices as follows

UM = DM
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. (19)

Therefore, comparing the coefficients and indices of both the repulsive and
attractive terms of equations (1), (12), (18) and (19), we observe the following
connection

ξ = 12 = 2αR = 2a (20)

for long range. The justification for comparing coefficients and indices of the
term containing exp(1 − r/R) with those containing (R/r) is on the basis the
Maclaurin series expansions
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which allows for the approximation
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≈ R

r
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(23)

for |δr/R| < 1 whereby δr = r − R.
To relate the modern potentials to the classical ones, we observe that the

2-body portion of the BMS potential

UBMS = A exp (−Br) − C

rn
(24)

coincides exactly with Bucking potential for the case where n = 6. To relate the
Morse potential and the 2-body portion of the BH potential

UBH = A1 exp (−λ1r) + A2 exp (−λ2r) , (25)
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we set (
∂UBH

∂r

)
r=R

= 0 (26)

to obtain

λ1A1 exp (−λ1R) = −λ2A2 exp (−λ2R) (27)

so that equation (25) can be rewritten as

UBH = A1 exp (−λ1R)

[
exp (−λ1(r − R)) − λ1

λ2
exp (−λ2(r − R))

]
. (28)

In this way, comparison between equations (2) and (28) suggests{
λ1

λ2

}
= α

{
2
1

}
(29)

and

DM = A1 exp (−λ1R) , (30)

where R is obtainable from equation (27).
The entire simultaneous connections amongst the four classical pair poten-

tials, and their relations to 2-body portions of modern many-body potentials, are
summarized in table 2.

Table 2
Parametric connections among the considered interatomic potential functions.

Potential functions Parametric connections

Among the four classical potentials DLJ = DM = DRyd = (
ξ−6

6

)
A exp (−ξ) =

(
ξ−6
ξ

) (
B

ξ

)6
C

ULJ = ULJ(DLJ,R, r) For near-equilibrium,

UM = UM(DM, α, R, r) ξ = RB =
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7
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6

)
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7
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)2
− 2S2

URyd = URyd(DRyd, a, R, r) where S = 6 = αR = a√
2
.

UB = UB(A, B, C, r) For long-range, ξ

2 = 6 = αR = a.
Between Morse and 2-body portion of DM = A1 exp (−λ1R) = − λ2

λ1
A2 exp (−λ2R)

BH potentials
UM = UM(DM, α, R, r) α = λ1

2 = λ2

UBH = UBH(A1, A2, λ1, λ2, r) R = 1
λ1−λ2

ln
(
− λ1A1
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)
Between Buckingham and the 2-body
portion of BMS
UB = UB(A, B, C, r) n = 6
UBMS = UBMS(A, B, C, n, r)
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3. Results and discussion

Verification can be made by observing theoretical plots of non-dimensional
interatomic potential energy (U/D) against the non-dimensional interatomic
distance (r/R). Applying the near-equilibrium relationships and the long range
relationships, as furnished in table 2, into the classical potentials described in
equations (1)–(3) and (12), we have the curves of (U/D) versus (r/R), as shown
in figures 2 and 3 for near-equilibrium and long range, respectively. Whilst the
magnitude of D quantifies the bond strength (high D for strong bonds, low D

Figure 2. Plots of the four classical potentials simultaneously connected for near-equilibrium.

Figure 3. Plots of the four classical potentials simultaneously connected for long-range.
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for weak bonds), the shape of (U/D) versus (r/R) describes how “hard” or how
“soft” the bond is, regardless of the bond strength. An acute rise in (U/D) ver-
sus (r/R) followed by a more abrupt leveling-off indicates the bond hardness
that characterizes a covalent-type (or hard, solid-like) bond, whilst a gradual rise
in (U/D) versus (r/R) signifies a van der Waals-type (soft, fluid-like) bond. This
can be inferred from the fact that the interatomic force is related to the potential
energy and interatomic separation distance as

F = −∂U

∂r
, (31)

thereby denoting a sharp drop in interatomic force during interatomic separa-
tion of “hard” bonds. As such, imposition of equal derivatives of the potential
energy up to the second order at r = R not only gives equal curvature there
(see figure 2), but also reveals the shape of (U/D) versus (r/R). It is therefore
of no surprise that the Lennard-Jones and the Buckingham potentials are nor-
mally employed in computational chemistry softwares for describing van der Wa-
als interaction, while Morse and Rydberg (2-body MM) potentials are used for
covalent bonds in molecules and in solid-state matter.

In the case of parametric relationship for long range, relaxing the imposi-
tion of equal second order derivative at r = R no longer results in equal curva-
ture there. However the sacrifice of equal curvature at equilibrium enables good
agreement to be made for r > R. This is especially observed for the case of
Rydberg curve whereby a decrease in curvature at equilibrium enables an over-
all drop in the potential energy, thereby allowing reasonable correlation with the
Lennard-Jones and the Buckingham potentials for long range.

Connection between the Morse and 2-body BH as well as that between
Buckingham and 2-body BMS are not plotted due to their exact relationship
shown in table 2.

4. Conclusions

A relationship between the four classical interatomic pair potentials has
been developed in this paper, thereby establishing their simultaneous connections.
This was done by imposing equal potential energy, and their first two derivatives
at equilibrium as well as the usage of calculus and Maclaurin series expansions.
Discrepancies were shown via theoretical plots of (U/D) versus (r/R), thereby
elucidating the choice of potential functions used for quantifying different types
of interatomic interaction in computational chemistry and solid-state softwares.
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